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Terminology and notation. I’m going to use H1-distance to mean the distance between
two points of the upper half-plane as a model for hyperbolic geometry. Similarly, by H2-

distance I will mean the distance between two points of the unit disc as a model for hyperbolic
geometry. I will denote the H1-distance from a to b in the upper half-plane by H1(a, b) and
the H2-distance from a to b in the unit disc by H2(a, b).

Distances in the upper half-plane model. Suppose a, b ∈ C are any two points in the
upper half-plane.

Consider first the case where a, b lie on a vertical line, say a = x + iy1 and b = x + iy2.
This line is the image of the map γ(t) = it for t ∈ R. |dz|/ Im(z) is the element of arc length
in the upper half-plane model, so
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If a, b do not lie on a vertical line, it is necessary to determine a geodesic connecting
them. Let c denote the intersection of the real axis and the perpendicular bisector of the
segment joining a and b. Then a and b lie on a semicircle M centered at c and orthogonal
to the real axis; let p denote one of the intersection points of this circle and the real axis.
Suppose C is any circle centered at p, and let q be the intersection in the upper half-plane
of C and M .

Apply reflection in C to the scene hence constructed, so M is sent to a vertical line. By
composing suitable fractional linear transformations with reflection in the imaginary axis,
one sees that reflection in C must be an orientation-reversing isometry of the upper half-
plane when endowed with hyperbolic geometry, so the arc of M connecting a and b and its
image under this reflection, a vertical line segment connecting the images of a and b, have
the same H1-length. Therefore, this arc is a geodesic connecting a and b, so if ã and b̃ are
the images of a and b under this reflection then the previous result about lengths of vertical
line segments yields
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Another (more explicit) formula can be found after distances have been understood in
the unit disc.

Distances in the unit disc model. Consider the fractional linear transformation S that
sends ∞ 7→ i and ±1 7→ ±1 (i.e., 1 and −1 are each fixed points). S sends the real axis
to the boundary of the unit disc and, since fractional linear transformations preserve the
orientation of circles, it sends the upper half-plane to the disc’s interior.

With this conformal map in hand, the H2-distance between two points a, b in the unit
disc is the H1-distance between their preimages S−1(a), S−1(b) in the upper half-plane, and
in this way the unit disc inherits a metric from the metric of the upper half-plane.



Write D1 for the (interior of) the unit disc and suppose γ : [0, 1] → D1 is a piecewise
continuously differentiable curve. If Hi(γ) denotes the length of the curve γ in the appropriate
model, then the previous paragraph simply says that H2(γ) = H1(S

−1◦γ). Writing T = S−1,
we have
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Now T has the form T (z) = (iz − 1)/(−z + i). Thus
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so we obtain

H2(γ) =
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This provides the general formula for computing distances in the Poincaré disc and also
shows that 2/(1 − |z|2) dz is the element of arc length in this model.

Now any diameter of the unit disc is a geodesic, so if z is a point in the unit disc, then
the Euclidean segment from 0 to z is also a hyperbolic segment from 0 to z. We have hence
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The orientation-preserving isometries of the Poincaré disc are precisely the fractional linear
transformations preserving the unit disc. Let us identify this group of motions. If M is a frac-
tional linear transformation preserving the unit disc, then the following data will determine
M : (1) the preimage M−1(0) of the origin; (2) the image M(1) of 1 on the disc’s boundary.
Indeed, M−1(0) and 1/M−1(0) are symmetric with respect to the unit circle and their im-
ages must therefore also be symmetric with respect to the unit circle, so M(1/M−1(0)) = ∞.
Hence, M has the form

z 7→ α
z − M−1(0)

M−1(0)z − 1

for some complex number α ∈ C. But
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Moreover, |α| = |M(1)| · |(M−1(0) − 1)/(1 − M−1(0))| = 1 · 1 since M(1) lies on the unit
circle, so α = eiθ for some θ ∈ R. In short, the fractional linear transformations preserving
the unit disc have the form

z 7→ eiθ z − β

βz − 1



where β is the preimage of 0 under this map. Denote this map by M(θ, β).
This not only specifies the motions of the Poincaré disc, but it also furnishes an explicit

one-parameter family of fractional linear transformations sending an arbitrary point β in the
disc to the origin. If θ ∈ R is arbitrary and a, b are points of the unit disc, then it follows
that
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Distances in the upper half-plane model, cont’d. Recalling that S is the map from
the upper half-plane to the unit disc, the definitions have been set up so that if a, b are
points of the upper half-plane, then H1(a, b) = H2(S(a), S(b)). Therefore,
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Since 2 tanh−1(x) = log((1 + x)/(1 − x)) if |x| < 1, we obtain after clearing denominators
the equivalent expression

H1(a, b) = log
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The Pythagorean theorem. I’ll derive Pythagoras’ theorem in the unit disc model. Sup-
pose A, B, C are the vertices of a hyperbolic triangle in the unit disc. Write a = |BC|,
b = |AC|, c = |AB| for the Euclidean lengths of the Euclidean segments joining the vertices,
ã, b̃, c̃ for the H2-lengths of the hyperbolic segments joining the vertices, and α = ∠BAC,
β = ∠ABC, γ = ∠ACB for the measures of the angles (with respect to the hyperbolic edges
joining the vertices, not the Euclidean edges).

Because fractional linear transformations preserving the unit disc are conformal and
distance preserving maps of the Poincaré disc to itself, any right triangle △ABC (with α
the right angle) can always be transformed into a triangle with A = 0, B = c, and C = bi
where the lengths of the sides and angles are unaffected; it suffices to prove the theorem for
this particularly nice triangle. Since c is the Euclidean distance from the origin to B, the
H2-distance from the origin to B is simply c̃ = 2 tanh−1(c).

Thus c = tanh(c̃/2), b = tanh(b̃/2), and
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It is an identity that

cosh(ã) =
1 + tanh2(ã/2)

1 − tanh2(ã/2)
,

so we obtain in fact
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=
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But everything has been constructed so that BC + BC = cbi − cbi = 0 and the right-most
term drops out. The first fraction of the first term is

1 + |B|2

1 − |B|2
=

1 + tanh2(b̃/2)

1 − tanh2(b̃/2)
= cosh(b̃)

and similarly the second fraction of the first term is cosh(c̃). The theorem is proved.


