The Christoffel-Schwarz Formula

Zach Conn

22 April 2010

Suppose Ω is a bounded simply connected region whose boundary is a simple polygon P. Suppose $z_{1}, z_{2}, \ldots, z_{n}$ are the consecutive vertices of P. Write $\alpha_{k} \pi$ for the interior angle at vertex z_{k} and $\beta_{k} \pi=\pi-\alpha_{k} \pi$ for the exterior angle at the same vertex. Finally, suppose f is a bijective conformal map sending Ω, the interior of the polygon P, onto the open unit disc \mathbb{D}. We wish to find an explicit representation for the inverse F of f, and to do so we will in fact find a representation for the derivative F^{\prime} and then find F by integration. This is accomplished by a study of the behavior of f near the corners of P.

We depart from the following two facts which we will not prove: (1) f can be extended by continuity to the open line segment connecting two consecutive vertices of P and, further, these open segments are mapped onto arcs of the unit circle; (2) we assume the reflection principle of Schwarz.

We assume f has been extended as in (1) for the rest of this document. We begin by drawing a small circle around the vertex z_{k}. The intersection of the interior of this circle and Ω is a circular sector S_{k}. We introduce the new coordinate $\zeta=\left(z-z_{k}\right)^{1 / \alpha_{k}}$. By suitably choosing the branch of this function the sector S_{k} is mapped onto a half-disc S_{k}^{\prime} with z_{k} sent the origin. We now "pull back" f from S_{k} to S_{k}^{\prime} and switch coordinates from z to ζ. Hence we consider the map $g(\zeta)=f\left(\zeta^{\alpha_{k}}+z_{k}\right)$ from S_{k} onto some subset of \mathbb{D}.

Suppose K is a compact set in $g\left(S_{k}\right) \subseteq \mathbb{D}$. Since g is a homeomorphism from S_{k} onto $g\left(S_{k}\right)$, the preimage $g^{-1}(K)$ is a compact subset of S_{k}. Suppose now that $\left\{\zeta_{k}\right\}_{k=1}^{\infty}$ is a sequence of points in S_{k} tending to the diameter of S_{k}. For each point $a \in S_{k}$ pick a number ϵ_{ζ} such that the disc $0 \leq|\zeta-a|<\epsilon_{\zeta}$ is contained entirely in S_{k}. The discs $0 \leq|\zeta-a|<\epsilon_{\zeta}$ for $\zeta \in S_{k}$ form an open cover of S_{k}. Therefore, $g^{-1}(K)$ is covered by finitely many of these discs, and so there is an integer n_{0} such that ζ_{n} is not in $g^{-1}(K)$ for $n \geq n_{0}$. But then $g\left(\zeta_{n}\right)$ is not in K for $n \geq n_{0}$. We hence find that the sequence $\left\{g\left(\zeta_{k}\right)\right\}_{k=1}^{\infty}$ eventually exits from every compact subset of $g\left(S_{k}\right)$. Since the diameter of S_{k} is mapped onto an arc of the unit circle, this means that $|g(\zeta)| \rightarrow 1$ as ζ approaches the diameter of S_{k}.

The reflection principle of Schwarz provides an analytic continuation of g to the whole disc. In fact, the analytic continuation of g satisfies $g\left(\zeta^{*}\right)=(g(\zeta))^{*}$ where z^{*} is the reflection of z in the diameter of the disc.

We replace g by this analytic continuation. The previous computation allows us to conclude by sending $\xi \rightarrow 0$ that $f(z)$ has a limit $w_{k}=e^{i \theta_{k}}$ as $z \rightarrow z_{k}$, and hence the arcs of the unit circle that are the images of the sides of the edges of the polygon meeting at z_{k} have a point w_{k} in common.

We now demonstrate that the arcs of the circle are otherwise disjoint. To do this, we draw a small rectangle inside Ω with one edge on the segment joining z_{k} to z_{k+1}, and we denote the enclosed region along with the rectangular boundary R. Suppose a, b are the vertices of R on the segment $\left[z_{k}, z_{k+1}\right]$. The image of R under f is a region U in \mathbb{D} whose boundary contains the arc of the unit circle corresponding to the segment $[a, b]$. But f is analytic and injective on R, so if the boundary of R is given a positive orientation the boundary of U will
inherit this orientation. This implies that the arc of the circle corresponding to $[a, b]$ must have a positive orientation relative to the open disc \mathbb{D}. Since this is true for every edge of the polygon, it follows that the images of the edges are arcs of the circle that are disjoint except at the endpoints.

Thus f maps the closure of Ω onto the closed unit disc, the points z_{k} to the points w_{k}, and the edges of the polygon to arcs of the unit circle connecting the images of the respective vertices.

Since g has been analytically continued to the full disc, it is analytic at the origin, so it has the convergent Taylor development

$$
f\left(z_{k}+\zeta^{\alpha_{k}}\right)=w_{k}+\sum_{m=1}^{\infty} a_{m} \zeta^{m}
$$

Now suppose $g^{\prime}(0)=0$. Then by theorems on local correspondence g must be at least two-to-one in some neighborhood of zero, i.e., there must be points a, b nearby zero such that $g(a)=g(b)$. Let T_{k}^{\prime} denote the reflection of the half-disc S_{k}^{\prime} in its diameter. g is one-to-one on S_{k}^{\prime} and hence also on its reflection T_{k}^{\prime} in the diameter, so it must be that $a \in S_{k}^{\prime}$ and $b \in T_{k}^{\prime}$. But by the reflection principle we find that a will be contained in \mathbb{D} and b will be in the exterior of \mathbb{D}, a contradiction.

Therefore, the series that occurs in the right member of the above equation has an inverse. Writing $w=f\left(z_{k}+\zeta^{\alpha_{k}}\right)$, we find

$$
\zeta=\sum_{m=1}^{\infty} b_{m}\left(w-w_{k}\right)^{m}
$$

valid in some neighborhood of w_{k}. Moreover, $b_{1} \neq 0$ since this series also is invertible.
We raise both sides of the most recent equation to the power α_{k} and obtain

$$
F(w)-z_{k}=\left(w-w_{k}\right)^{\alpha_{k}} G_{k}(w),
$$

where G_{k} is analytic and nonzero near w_{k}. Differentiating both sides and then dividing by $\left(w-w_{k}\right)^{\alpha_{k}-1}$ gives

$$
F^{\prime}(w)\left(w-w_{k}\right)^{\beta_{k}}=\alpha_{k} G_{k}(w)+\left(w-w_{k}\right) G_{k}^{\prime}(w)
$$

since $\beta_{k}=1-\alpha_{k}$. The limit of the right member as $w \rightarrow w_{k}$ is $\alpha_{k} G_{k}\left(w_{k}\right) \neq 0$, and hence the left member $F^{\prime}(w)\left(w-w_{k}\right)^{\beta_{k}}$ represents a function that is analytic and nonzero at w_{k}. Therefore, the product

$$
H(w)=F^{\prime}(w) \prod_{k=1}^{n}\left(w-w_{k}\right)^{\beta_{k}}
$$

is analytic and nonzero in the closed unit disc. We now show that $H(w)$ is a constant.
To accomplish this, suppose that $w=e^{i \theta}$ with $\theta_{k}<\theta<\theta_{k+1}$ for some k. Now $\arg F^{\prime}\left(e^{i \theta}\right)$ is the angle between the tangent to the unit circle at $e^{i \theta}$ and the tangent to the image of the unit circle at $F\left(e^{i \theta}\right)$. But the latter tangent has constant argument on the segment joining z_{k} to z_{k+1} and the former tangent has argument $\theta+\pi / 2$. Moreover, the argument of $w-w_{k}$ is $\theta / 2$ plus a constant. We find thus that $\arg H(w)$ differs from

$$
-\theta+\frac{\theta}{2} \sum_{k=1}^{n} \beta_{k}
$$

by a constant independent of θ. From geometric considerations we find that the sum is 2 and hence this quantity reduces to 0 . Therefore, $\arg H(w)$ is constant on the arcs connecting
consecutive points w_{k} and w_{k+1}. By continuity it is constant on the whole circle. But the argument is the harmonic function $\operatorname{Im} \log (H(w))$, and harmonic functions are subject to the minimum and maximum principles. Using both principles at once shows that $\operatorname{Im} \log (H(w))$ is constant in the unit disc. An analytic function with constant imaginary part reduces to a constant, and hence $\log (H(w))$ and so also $H(w)$ are constant.

We finally obtain by integration

$$
F(w)=C \int_{0}^{w} \prod_{k=1}^{n}\left(w-w_{k}\right)^{-\beta_{k}} d w+C^{\prime}
$$

where C, C^{\prime} are constants and the path of integration is arbitrary.

