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Suppose Ω is a bounded simply connected region whose boundary is a simple polygon
P . Suppose z1, z2, . . . , zn are the consecutive vertices of P . Write αkπ for the interior angle
at vertex zk and βkπ = π − αkπ for the exterior angle at the same vertex. Finally, suppose
f is a bijective conformal map sending Ω, the interior of the polygon P , onto the open unit
disc D. We wish to find an explicit representation for the inverse F of f , and to do so we
will in fact find a representation for the derivative F ′ and then find F by integration. This
is accomplished by a study of the behavior of f near the corners of P .

We depart from the following two facts which we will not prove: (1) f can be extended
by continuity to the open line segment connecting two consecutive vertices of P and, further,
these open segments are mapped onto arcs of the unit circle; (2) we assume the reflection
principle of Schwarz.

We assume f has been extended as in (1) for the rest of this document. We begin by
drawing a small circle around the vertex zk. The intersection of the interior of this circle
and Ω is a circular sector Sk. We introduce the new coordinate ζ = (z−zk)

1/αk . By suitably
choosing the branch of this function the sector Sk is mapped onto a half-disc S ′

k with zk sent
the origin. We now “pull back” f from Sk to S ′

k and switch coordinates from z to ζ . Hence
we consider the map g(ζ) = f(ζαk + zk) from Sk onto some subset of D.

Suppose K is a compact set in g(Sk) ⊆ D. Since g is a homeomorphism from Sk onto
g(Sk), the preimage g−1(K) is a compact subset of Sk. Suppose now that {ζk}

∞

k=1
is a

sequence of points in Sk tending to the diameter of Sk. For each point a ∈ Sk pick a number
ǫζ such that the disc 0 ≤ |ζ − a| < ǫζ is contained entirely in Sk. The discs 0 ≤ |ζ − a| < ǫζ

for ζ ∈ Sk form an open cover of Sk. Therefore, g−1(K) is covered by finitely many of these
discs, and so there is an integer n0 such that ζn is not in g−1(K) for n ≥ n0. But then g(ζn)
is not in K for n ≥ n0. We hence find that the sequence {g(ζk)}

∞

k=1
eventually exits from

every compact subset of g(Sk). Since the diameter of Sk is mapped onto an arc of the unit
circle, this means that |g(ζ)| → 1 as ζ approaches the diameter of Sk.

The reflection principle of Schwarz provides an analytic continuation of g to the whole
disc. In fact, the analytic continuation of g satisfies g(ζ∗) = (g(ζ))∗ where z∗ is the reflection
of z in the diameter of the disc.

We replace g by this analytic continuation. The previous computation allows us to
conclude by sending ξ → 0 that f(z) has a limit wk = eiθk as z → zk, and hence the arcs
of the unit circle that are the images of the sides of the edges of the polygon meeting at zk

have a point wk in common.
We now demonstrate that the arcs of the circle are otherwise disjoint. To do this, we draw

a small rectangle inside Ω with one edge on the segment joining zk to zk+1, and we denote
the enclosed region along with the rectangular boundary R. Suppose a, b are the vertices of
R on the segment [zk, zk+1]. The image of R under f is a region U in D whose boundary
contains the arc of the unit circle corresponding to the segment [a, b]. But f is analytic and
injective on R, so if the boundary of R is given a positive orientation the boundary of U will



inherit this orientation. This implies that the arc of the circle corresponding to [a, b] must
have a positive orientation relative to the open disc D. Since this is true for every edge of
the polygon, it follows that the images of the edges are arcs of the circle that are disjoint
except at the endpoints.

Thus f maps the closure of Ω onto the closed unit disc, the points zk to the points wk,
and the edges of the polygon to arcs of the unit circle connecting the images of the respective
vertices.

Since g has been analytically continued to the full disc, it is analytic at the origin, so it
has the convergent Taylor development

f(zk + ζαk) = wk +
∞∑

m=1

amζm.

Now suppose g′(0) = 0. Then by theorems on local correspondence g must be at least two-
to-one in some neighborhood of zero, i.e., there must be points a, b nearby zero such that
g(a) = g(b). Let T ′

k denote the reflection of the half-disc S ′

k in its diameter. g is one-to-one
on S ′

k and hence also on its reflection T ′

k in the diameter, so it must be that a ∈ S ′

k and
b ∈ T ′

k. But by the reflection principle we find that a will be contained in D and b will be in
the exterior of D, a contradiction.

Therefore, the series that occurs in the right member of the above equation has an inverse.
Writing w = f(zk + ζαk), we find

ζ =

∞∑
m=1

bm(w − wk)
m,

valid in some neighborhood of wk. Moreover, b1 6= 0 since this series also is invertible.
We raise both sides of the most recent equation to the power αk and obtain

F (w) − zk = (w − wk)
αkGk(w),

where Gk is analytic and nonzero near wk. Differentiating both sides and then dividing by
(w − wk)

αk−1 gives

F ′(w)(w − wk)
βk = αkGk(w) + (w − wk)G

′

k(w)

since βk = 1 − αk. The limit of the right member as w → wk is αkGk(wk) 6= 0, and hence
the left member F ′(w)(w − wk)

βk represents a function that is analytic and nonzero at wk.
Therefore, the product

H(w) = F ′(w)

n∏
k=1

(w − wk)
βk

is analytic and nonzero in the closed unit disc. We now show that H(w) is a constant.
To accomplish this, suppose that w = eiθ with θk < θ < θk+1 for some k. Now arg F ′(eiθ)

is the angle between the tangent to the unit circle at eiθ and the tangent to the image of the
unit circle at F (eiθ). But the latter tangent has constant argument on the segment joining
zk to zk+1 and the former tangent has argument θ +π/2. Moreover, the argument of w−wk

is θ/2 plus a constant. We find thus that arg H(w) differs from

−θ +
θ

2

n∑
k=1

βk

by a constant independent of θ. From geometric considerations we find that the sum is 2
and hence this quantity reduces to 0. Therefore, arg H(w) is constant on the arcs connecting



consecutive points wk and wk+1. By continuity it is constant on the whole circle. But the
argument is the harmonic function Im log(H(w)), and harmonic functions are subject to the
minimum and maximum principles. Using both principles at once shows that Im log(H(w))
is constant in the unit disc. An analytic function with constant imaginary part reduces to a
constant, and hence log(H(w)) and so also H(w) are constant.

We finally obtain by integration

F (w) = C

∫ w

0

n∏
k=1

(w − wk)
−βk dw + C ′

where C, C ′ are constants and the path of integration is arbitrary.


