
2 dimensions; the basic setup Periodic billiards in 3 and 4 dimensions Computer simulations Further research

Periodic billiard orbits in convex polytopes

Zach Conn, Rice University
Nell Kroeger, Texas A&M University
Ray Navarrete, University of Arizona

11 August 2010



2 dimensions; the basic setup Periodic billiards in 3 and 4 dimensions Computer simulations Further research

Outline

1 2 dimensions; the basic setup

2 Periodic billiards in 3 and 4 dimensions

3 Computer simulations

4 Further research



2 dimensions; the basic setup Periodic billiards in 3 and 4 dimensions Computer simulations Further research

What is a billiard orbit?

Definition

Fix a polygon P in the plane. Ignoring friction, set into motion a
point-mass m starting on one of the edges of P. The point-mass
will travel along a straight trajectory except on collision with
another edge of P, when it will be subjected to an elastic collision
response (i.e., its velocity vector will be reflected in the line
containing the edge). The overall trajectory traced out by m is its
billiard orbit.

Assume the point-mass does not collide with the vertices.

Example

Pool. One can imagine playing pool not necessarily in a rectangle
(the pool table) but in an arbitrary polygon P.
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The basic question

Definition

A billiard orbit is periodic if the point-mass eventually returns to
its starting position with the same velocity vector.

The basic question is this: in which polygons do periodic orbits
exist?

Example

1 A square. Given a square S , the square whose vertices are the
midpoints of the edges of S constitutes a periodic billiard
trajectory.

2 An acute triangle. Given an acute triangle T , find the feet
a, b, c of the three altitudes. The triangle with vertices a, b, c
constitutes a periodic billiard trajectory sometimes called
Fagnano’s orbit.
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Rational polygons

Definition

A rational polygon is a polygon every angle of which is a rational
multiple of π.

Definition

A periodic billiard orbit in a polygon is perpendicular if it hits one
of the edges at a right angle. The point-mass will thus hit this
edge and then bounce directly backwards, following its trajectory
in the opposite direction.

Theorem

Every rational polygon admits a perpendicular periodic billiard
orbit.
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Unfolding

Given a polygon P with edges labeled e1, e2, . . . , en and a sequence
of integers i1, i2, . . . , im, each of which is an element of
{1, 2, . . . , n} such that no two adjacent sequence elements are
equal, the basic tool is to unfold the polygon along this edge
sequence.

1 Reflect the entire polygon P in the edge ei1 . Maintain the
labeling of edges in the reflected polygon P2.

2 Reflect P2 in its edge labeled ei2 . Maintain the labeling of
edges in the reflected polygon P3.

3 . . .

4 At the end, one will have a chain of copies of P.
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The relation between unfolding and periodic
orbits

1 Given a polygon P and its unfolded chain along some
specified edge sequence, any periodic orbit in P will
correspond to a straight line that stays entirely within the
unfolded chain and connects a point on the starting edge of P
with the corresponding image point on the final reflected
polygon Pm+1.

2 This unfolding procedure generalizes to arbitrarily high
dimensions.
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Omnihedral billiards

Definition

An omnihedral billiard is a periodic billiard that hits every face of
an n-dimensional polytope exactly once.

3 and 4 dimensions

Omnihedral periodic billiards have been found in all five
regular polyhedra and in n-dimensional hypercubes and
regular simplices.

The 4-dimensional cross-polytope also admits such a billiard
but for the 24-cell, 120-cell, and 600-cell it is not known
whether any omnihedral periodic billiards exist.
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The cuboctahedron

The cuboctahedron is a quasi-regular polyhedron with six square
faces and eight triangular faces. The square faces share normals
with the faces of a cube, and the triangular faces share normals
with the faces of an octahedron.
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The cuboctahedron

Periodic orbits

Periodic orbits of orders 2, 4, and 6 that hit only square faces
exist.

It is not known whether an 8-periodic trajectory that hits all
triangular faces exists.

Theorem

There exist no 3-periodic trajectories.

Given a vector vi that hits a face with normal ni+1, the reflected
vector is given by

vi+1 = vi − 2〈vi , ni+1〉ni+1.
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The cuboctahedron

vi+1 = vi − 2〈vi , ni+1〉ni+1. (1)

If a k-periodic trajectory has vectors v0, v1, . . . , vk−1, vk = v0, then
using (1) recursively,

k−1∑
i=0

〈vi , ni+1〉ni+1 = 0.

Therefore a necessary condition for the existence of a k-periodic
trajectory is that the normal vectors n0, . . . , nk−1 corresponding to
the faces hit by the trajectory must be linearly dependent.
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The projection algorithm

Step 1 Start with a convex polyhedron P and a face sequence
f1, f2, . . . , fn.

Step 2 Unfold the polyhedron P along the designated face sequence
step by step.

Step 3 Let Ri be the reflection matrix for face fi . Compute the
product R = R1R2 . . .Rn for an even number of reflections.

Step 4 If R is not the identity, let v be the real eigenvector with
eigenvalue 1 (the axis of rotation). If R is the identity, let v
be the translation of the origin after the unfolding process.

Step 5 Let Π be the plane through the origin orthogonal to v .
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The projection algorithm, cont’d

Step 6 Before each reflection in the unfolding process, project the
next face of reflection onto the plane Π, obtaining a polygon
pi in the plane. Compute the intersection I of the polygons
p1, p2, . . . , pn.

Step 7 If R is the identity, then I will be the collection of starting
points of periodic orbits that hit the faces f1, f2, . . . , fn.
Otherwise I will be a set of candidate starting points, and
further analysis by hand will be required.
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The probabilistic algorithm

Step 1 Two points are randomly chosen on different faces of a convex
polytope. The line joining them is the first segment of a
billiard trajectory.

Step 2 The program extends the trajectory face by face. As soon as a
face is encountered more than once, the program terminates.

Step 3 Steps 1 and 2 are repeated millions of times, and those
billiards that hit each face exactly once and return to the
original face are isolated.
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Some results

This algorithm was successful in isolating omnihedral face
sequences for already solved polytopes: regular polygons,
some regular polyhedra, and hypercubes.

The algorithm has not found omnihedral face sequences for
the remaining regular polychora.

It did find a possible omnihedral face sequence in the
cuboctahedron, but the projection algorithm reported that
this sequence admits no periodic orbit.
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A program for further research

Classify periodic trajectories for regular polygons and
polyhedra.

Classify some of the trajectories in the unsolved cases.

Run the algorithms over a long period of time to try to
discover a periodic omnihedral orbit in the cuboctahedron and
24-cell.

Determine whether or not there exists a periodic trajectory in
the cuboctahedron that hits all the triangular faces (and no
others).
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