
Topology, Groups, and Knots

Zach Conn
Rice University

Spring 2010



Contents

1 Preliminaries 3

2 Topology 3
2.1 Homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Groups 7
3.1 Binary operations . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Motions of the plane . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Normal subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Characteristic subgroups . . . . . . . . . . . . . . . . . . . . . 22
3.9 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Quotient groups . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 Free groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Group presentations . . . . . . . . . . . . . . . . . . . . . . . 27

4 Knots 27
4.1 What is a knot? . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Knot diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 The Reidemeister moves . . . . . . . . . . . . . . . . . . . . . 29
4.4 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 The fundamental group . . . . . . . . . . . . . . . . . . . . . . 33
4.6 The knot group . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 The Wirtinger presentation . . . . . . . . . . . . . . . . . . . 35
4.8 Linking numbers . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Branched covers . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



1 Preliminaries

These notes summarize the most basic definitions and results in algebra,
topology, and knot theory. They are intended to be as self-contained as
possible, so they depart from almost no prerequisites.

We begin by fixing notations and introducing fundamental concepts that
will be in use constantly. We adopt the conventions of naive set theory and
leave the term “set” undefined as well as relations such as set membership.

If A, B are arbitrary sets, a function from A to B is a rule that assigns
to each element of A exactly one element of B. If a function is denoted by
the symbol f and a ∈ A, then the element of B that corresponds to a is
denoted by f(a) and is called the image of a under f . To indicate that the
symbol f refers to a function from A to B, one often writes f : A → B. The
set A is the domain of f and B is the codomain of f .

The concept of image can be generalized from elements of the domain A
to subsets of A. If U ⊆ A is any subset of A, then the symbol f(U) refers
to the set {f(x) : x ∈ U} of images of elements of U under f . In particular,
f(A) is simply called the image of f itself. In general f(A) ⊆ B.

In case f(A) = B, the function f is called surjective (or onto). If f is
surjective and b ∈ B, then there exists at least one element a ∈ A such that
f(a) = b; a is a preimage of b under f . If V ⊆ B is an arbitrary subset of
B, then the symbol f−1(V ) refers to the set {a ∈ A : f(a) ∈ V } of preimages
of elements of V under f .

If f(x) = f(y) implies x = y for all x, y ∈ A, then f is called injective (or
one-to-one). By considering the contrapositive one obtains an equivalent
characterization: f is injective if x 6= y implies f(x) 6= f(y) for all x, y ∈ A.

A function that is at once injective and surjective is called bijective;
such a function is a one-to-one correspondence. The terms injection,
surjection, and bijection are occasionally used to refer to functions that are
respectively injective, surjective, and bijective.

2 Topology

We proceed to a review of the notions from topology that will be useful in
our study of knots and links.
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2.1 Homeomorphisms

Recall that a function f : U → V from one topological space U to another
topological space V is continuous if the preimage of an open set in V is
open in U .

Definition 2.1. A homeomorphism from a topological space U to a space
V is a function f : U → V that is continuous, bijective, and has a contin-
uous inverse. Two spaces U and V are homeomorphic if there exists a
homeomorphism from one to the other.

Example 2.2. Fix two positive real numbers a, b. The closed unit disc D =
{x ∈ R2 : |x| ≤ 1} is homeomorphic to the solid ellipse E = {u(a cos(v), b sin(v)) :
u ∈ [0, 1], v ∈ [0, 2π)}. In fact, the function f : D → E sending a point
(x, y) ∈ D in the disc to the point (ax, by) ∈ E in the ellipse is a homeomor-
phism. Its inverse is the function sending the point (x, y) ∈ E in the solid
ellipse to the point (x/a, y/b) ∈ D in the disc, and both f and f−1 are clearly
continuous.

Non-Example 2.3. Consider the function f : [0, 2π) → S1 = {x ∈ R2 :
|x| = 1} that sends θ 7→ (cos(θ), sin(θ)). If U is an open subset of R2 con-
taining (1, 0), then the preimage f−1(U ∩ S1) will contain 0 but will not
contain any neighborhood of 0 and hence will not be open. Consequently,
the function f is not continuous everywhere and is therefore not a homeo-
morphism. This is not surprising: S1 is compact whereas [0, 2π) is not, and
compactness is preserved by continuous functions.

2.2 Manifolds

If M ⊆ Rn is a subset of n-dimensional Euclidean space, then M is an m-
dimensional manifold if for each point x ∈ M there is an open set U ∈ Rn

such that

• U contains x and

• the set U ∩ M is homeomorphic to Rm.

Thus, the subset M is endowed with the subspace topology it inherits from
Rn and each point is required to admit an open neighborhood homeomorphic
to Rm.
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Example 2.4. The n-sphere Sn = {x ∈ Rn+1 : |x| = 1} is always an
n-dimensional manifold, and we will check explicitly that S2 ⊆ R3 is a two-
dimensional manifold. If x ∈ S2 is any point on the sphere besides the north
pole (0, 0, 1), then S∗ = S2 −{(0, 0, 1)} is an open subset of S2 containing x.
In fact, S∗ is homeomorphic to the plane R2, and the correspondence can be
achieved explicitly via stereographic projection from (0, 0, 1).

To carry out the projection, associate to the point x ∈ S∗ the intersection
of the equatorial plane of S2 and the line in R3 containing (0, 0, 1) and x. If
x = (x1, x2, x3), then this line is the image of the function t 7→ (1−t)(0, 0, 1)+
tx = (tx1, tx2, 1− t + tx3) for t ∈ R. Hence this line intersects the equatorial
plane when t = 1/(1 − x3), so the intersection of the line and the equatorial
plane has coordinates (x1/(1 − x3), x2/(1 − x3), 0) as a point in R3; this is
the stereographic projection of x onto the equatorial plane.

With this motivation in place, we define stereographic projection from S∗

to the plane R2 to be the function sending

(x1, x2, x3) ∈ S∗ 7→

(

x1

1 − x3
,

x2

1 − x3

)

. (1)

This function is continuous, but it must be verified that it is bijective
if projection is to be used to show that S∗ is homeomorphic to the plane.
To do this, let (a, b) represent the coordinates in the equatorial plane of the
projection of x = (x1, x2, x3) ∈ S∗.

Suppose x3 is fixed but x1, x2 vary so long as x lies on S∗. Then the
points (x1, x2, x3) occupy the intersection of S∗ with a horizontal plane and
therefore trace out a horizontal circle; the projection of this circle onto the
plane is an origin-centered circle whose radius depends only on x2

1 +x2
2. This

heuristic suggests the following procedure for computing x in terms of its
projection (a, b).

Equation (1) implies |(a, b)|2 = (x2
1 +x2

2)/(1−x3)
2. But x2

1 +x2
2 = 1−x2

3,
so

|(a, b)|2 =
(1 + x3)(1 − x3)

(1 − x3)2
=

1 + x3

1 − x3

and

x3 =
|(a, b)|2 − 1

|(a, b)|2 + 1
.
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On substituting this expression for x3 into (1) we obtain

x1 = a(1 − x3) =
2a

1 + |(a, b)|2
and

x2 = b(1 − x3) =
2b

1 + |(a, b)|2
.

Therefore, each point in the plane (a, b) ∈ R2 has a unique preimage under
stereographic projection, so the projection is bijective. One must finally
check that the inverse of the projection is continuous, and this is clear from
the three equations that determine (x1, x2, x3) ∈ S∗ in terms of (a, b) ∈ R2.

To complete the proof that S2 is a manifold, one must find a neighborhood
of the north pole (0, 0, 1) that is homeomorphic to R2. In analogy with what
we have just done, we show that the open neighborhood S∗ = S2−{(0, 0,−1)}
of (0, 0, 1) is homeomorphic to R2 using stereographic projection from the
south pole (0, 0,−1). The procedure is precisely the same, so we will omit
the details.

2.3 Covering spaces

The definitions here are inspired by those presented in [1]. Suppose C, X are
topological spaces, U is an open subset of X, and φ : C → X is a continuous
surjective function. The subset U is evenly covered by the map φ if

• its preimage φ−1(U) is the disjoint union of open subsets of X and

• the restriction of φ to each of these open sets is a homeomorphism onto
U .

In the special case that every point x ∈ X has an open neighborhood U
evenly covered by φ we say that C is a covering space of X and that φ is
a covering map; we also refer to X as the base space.

Example 2.5. Let C be the real line R with its usual topology and let X
be the unit circle S1 considered as a subspace of the plane R2. Define the
function φ : C → X by φ(t) = (cos(2πt), sin(2πt)). Let us verify that C is
then a covering space of X. Any point in S1 has the form (cos(2πθ), sin(2πθ))
for some θ ∈ R, so select a point on S1 by fixing a value of θ. Put U =
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{(cos(2πα), sin(2πα)) : |α−θ| < 1/3} and observe that the preimage φ−1(U)
is the disjoint union

∐

n∈Z

(n + θ − 1/3, n + θ + 1/3);

each interval in this union is mapped homeomorphically by φ onto U . (The
constant 1/3 is simply chosen so that the intervals in the above union are
disjoint.)

Non-Example 2.6. Change C to be the interval (0, 1] but leave the rest
of the previous example unchanged. Now U = {(cos(2πα), sin(2πα)) : |α| <
1/3} is an open neighborhood of (1, 0) ∈ S1, but its preimage φ−1(U) =
(0, 1/3) ∪ (2/3, 1] is not a disjoint union of open subsets of C.

Example 2.7. As a general phenomenon, products of covering spaces are
covering spaces, and this can be illustrated by considering the torus T =
S1 × S1. Thus, if C, X, and φ are as in the first example, then the function
φ × φ : C × C → T defined by

φ(t1, t2) = (cos(2πt1), sin(2πt1), cos(2πt2), sin(2πt2))

is a covering map and C × C is a covering space of the torus.

Example 2.8. A comparatively exotic example is obtained by considering
the complex logarithm log(z) = log |z| + i arg(z). Notice that if z travels
around the origin in a smooth closed loop then log(z) will vary continuously
with z but will never return to its original value; this occurs because the
complex exponential exp(z) maps vertical lines into origin-centered concen-
tric circles.

This situation can be remedied in the following manner. If R+ is the set
of positive real numbers, put C = R × R+, X = C − {0}, and define the
function φ : C → X by φ(θ, r) = log(reiθ). Then C is a covering space of
X and φ represents a single-valued version of the complex logarithm defined
on C, which may be considered a morphed version of C. C is called the
Riemann surface of the complex logarithm.

3 Groups

We now make a change of pace and consider the fundamental constructions
of group theory. These constructions, despite being significant in themselves,
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will interact with the topological ideas already discussed in important and
useful ways.

3.1 Binary operations

If S is a set, then a binary operation on S is just a function S × S → S.

Example 3.1. Addition is a binary operation on Z but division is not (be-
cause the result of dividing 1 by 2, for example, is not in Z).

Although binary operations are functions, they are rarely written using
functional notation. A symbol such as ∗ is usually used, and we denote
the result of applying the operation to elements a, b (in this order) by the
expression a ∗ b. In certain contexts the result of applying the operation to
elements a, b is written as the juxtaposition ab.

A binary operation ∗ on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ S.

Example 3.2. Addition is an associative binary operation on Z. The cross
product is a binary operation on R3 but is not associative.

Associativity is an example of a situation where functional notation is
inconvenient. If we used the symbol f to represent the operation and used
functional notation, the relation for associativity would be the clumsy equa-
tion f(f(a, b), c) = f(a, f(b, c)).

If ∗ is associative, then the result of applying ∗ to a finite string of elements
of S is independent of how this string is parenthesized; therefore one can
write without ambiguity a1 ∗ a2 ∗ · · · ∗ an for any finitely many elements
a1, . . . , an ∈ S. A formal proof of this proceeds by induction on n.

A binary operation ∗ on S is commutative if a∗b = b∗a for all a, b ∈ S.

Example 3.3. Addition is a commutative binary operation on Z. Subtrac-
tion is a noncommutative binary operation on Z since a − b = −(b − a) for
a, b ∈ Z.

Example 3.4. The set of invertible real n×n matrices is called the general
linear group and denoted GLn(R). Matrix multiplication is a noncommu-
tative binary operation on GLn(R). Similarly, the set of real n × n matrices
with determinant 1 is the special linear group SLn(R), and multiplication
is also a noncommutative binary operation on SLn(R).
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3.2 Groups

Group theory is an abstract stage in which it’s convenient to study some
of the most common themes that arise in various mathematical systems.
The definition of a group, the fundamental abstraction of the theory, can be
phrased nicely with binary operations having been developed separately:

Definition 3.5. A group is a pair (G, ∗) where G is a set and ∗ is an
associative binary operation on G such that the following two conditions
hold:

(A) There exists an element e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G.
This element e is called an identity.

(B) For each a ∈ G there exists an element b ∈ G such that a∗b = b∗a = e,
where e is the identity whose existence was postulated in the previous
condition. b is called an inverse of a.

The operation is not required to be commutative. A group in which this
extra condition holds is called an abelian group. As a slight abuse of
language, we will usually refer to the set G as the group when the operation
is understood.

In a group G, the result of applying the operation ∗ is almost universally
denoted by juxtaposition. Thus one writes ab instead of a ∗ b. The addition
symbol + is also occasionally used, but this is traditionally reserved only for
abelian groups.

We record at once two simple results:

Lemma 3.6. If G is a group, then

(A) there is exactly one identity element and

(B) each element a ∈ G has exactly one inverse.

Proof.

(A) If e, e′ are identities in G, then e = ee′ = e′.

(B) (B) If a ∈ G and b, b′ ∈ G are inverses of a, then ab = e. Multiply on
the left by b′ to obtain b′ab = b′e. The left member is by associativity
(b′a)b = eb = b and the right member is b′e = b′, so b = b′.
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By virtue of this result one can speak of the identity in a group and the
inverse of an element. In particular, the inverse of an element a in the group
G is denoted by a−1.

It may be tempting to denote the inverse of a by 1/a, but this is ambiguous
in nonabelian groups G: if a, b ∈ G, it is not clear whether b/a refers to a−1b
or ba−1.

Examples of groups abound.

Example 3.7. The systems (Z, +), (Q, +), (R, +), and (C, +) are all ad-
ditive groups. The identity is 0 in each and inverses in the groups coincide
with the ordinary additive inverses.

Example 3.8. The general linear group GLn(R) is in fact a multiplicative
group, as is the special linear group SLn(R). Inverses exist by the definitions
of these sets, the identity is the familiar identity matrix, and matrix mul-
tiplication is associative since it corresponds to composition of linear maps
(and composition of functions is always associative).

Example 3.9. In the previous example, we noted that SLn(R) is a mul-
tiplicative group. In fact, SLn(Z), the set of n × n integer matrices with
determinant 1, is also a multiplicative group, but here we must verify that
the inverse of an integer matrix with determinant 1 is again an integer ma-
trix with determinant 1. This verification is handled by Cramer’s rule, which
asserts that the inverse of a matrix can be found by dividing each entry of
its adjugate (sometimes referred to as the “classical adjoint”) by its deter-
minant. The adjugate of an integer matrix is again an integer matrix, and
since the determinant is 1 the division by the determinant has no effect. It
remains to check that the inverse has determinant 1, but this follows directly
from the formulas det(A) = 1 and det(A) det(A−1) = 1.

For example, we can see this explicitly in the 2×2 case using the familiar
formula

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

.

Since ad − bc = 1 for any matrix in SL2(Z), this formula shows that the
inverse of an element in SL2(Z) is again an element of SL2(Z).

Non-Example 3.10. The system (Z, ·) is not a group since · is not a binary
operation on Z, as remarked earlier.
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Example 3.11. The subset {±1} ⊂ Z is a multiplicative group with identity
1. The inverse of 1 is 1 and the inverse of −1 is −1. This is our first example
of a finite group.

The order of a group is its cardinality. In the case of a finite group, the
order is just the number of elements in the group. For instance, {−1, 1} has
order two.

Example 3.12. The nonzero rational numbers Q−{0} form a multiplicative
group, as do the nonzero real numbers and the nonzero complex numbers. It
is necessary to eliminate zero so that every element is invertible.

Example 3.13. If S is a set, then a permutation of S is a bijection from S
to itself. Denote the set of all permutations of the set S by Sym(S). If S is
nonempty, then Sym(S) is a group with respect to function composition. The
identity of the group is the identity mapping, and the inverse of a permutation
is its inverse as a function (this inverse will exist since all permutations are
bijective). Moreover, the group operation is associative because function
composition is always associative.

Example 3.14. Building on the previous example, if S = {1, 2, . . . , n} for
some positive integer n, then we write Sn in place of Sym(S) and refer to Sn

as the symmetric group on n symbols. Evidently Sn has order n!. To see
this, consider the construction of an arbitrary permutation of {1, 2, . . . , n}.
We choose first from n options the image of 1 under the permutation. This
choice being made, we choose next from n − 1 options the image of 2. This
procedure is repeated until the images of all n elements of {1, 2, . . . , n} have
been decided, and there are n(n− 1)(n− 2) . . . 2× 1 = n! such permutations
that can thereby be constructed.

Definition 3.15. A system (G, ∗) consisting of a set S together with an
associative binary operation ∗ on S is called a semigroup. This terminology
is occasionally useful and will appear, for instance, in the discussion of free
groups later on.

Example 3.16. Put G = {0, 1} and define a∗b = 1 if a = b = 1 and a∗b = 0
otherwise. Then (G, ∗) is a semigroup but not a group. In fact, it is abelian
and has the identity 1, but 0 fails to have an inverse.
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3.3 Modular arithmetic

There are various accounts of modular arithmetic. Two slightly different
developments can be found in Herstein [5] and Artin [4].

Recall that an integer a ∈ Z is even if a = 2k for some k ∈ Z and odd
if a = 2k + 1 for some k ∈ Z. In this way Z is partitioned into the classes of
even and odd integers.

This situation is generalized by the congruence relation. One says that
integers a, b are congruent modulo n if n divides a − b or, equivalently,
if a = b + nk for some k ∈ N. This is represented by the expression a ≡ b
(mod n). We recover the traditional idea of parity when n = 2: an integer a
is even if a ≡ 0 (mod 2) and odd if a ≡ 1 (mod 2). The idea that modular
arithmetic generalizes parity is useful in problem solving, and an example is
given at the end of this section to illustrate this mode of thought.

If a ∈ Z, let a denote the set of all those integers congruent to a modulo
n. Thus

a = {. . . , a − 3n, a − 2n, a − n, a, a + n, a + 2n, a + 3n, . . . }.

We call a the residue class or congruence class of a modulo n, and the
collection of all residue classes modulo n is denoted Zn or Z/nZ. (The latter
notation will be explained in the section on quotient groups.)

The statement a = b is the same as the statement a ≡ b (mod n). The
latter has the advantage that it indicates the modulus n explicitly. The
former is often convenient in computations.

It seems intuitive that there should be n residue classes modulo n in the
same way that parity partitions Z into two classes. This is true, and it is the
fundamental result that makes modular arithmetic valid. Yet its proof relies
on the division algorithm, which we record for a reminder:

Lemma 3.17 (Division with remainder/division algorithm). If a, b ∈ Z with
b 6= 0, then there exist unique integers q, r such that a = bq+r and 0 ≤ r < |b|.

In this lemma, r is the remainder when a is divided by b.

Proposition 3.18. Zn has exactly n elements. In other words, congruence
modulo n partitions Z into n distinct residue classes.

Proof. If a ∈ Z, then there exist unique q, r ∈ Z such that a = qn + r and
0 ≤ r < n, so a = r; hence any congruence class is the congruence class of
a nonnegative integer less than n. To show that these classes are distinct,
suppose 0 ≤ a < b < n; then 0 < b − a < n, so n ∤ b − a and a 6= b.
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The proof shows that the n elements of Zn are the residue classes 0, 1, . . . , n − 1.
We would like to define the sum a + b of two residue classes to be the

residue class a + b of the sum of the representatives, but it is not immedi-
ately clear that this works since the same residue class will have multiple
representatives. To verify that this doesn’t matter, if a ≡ a′ (mod n) and
b ≡ b′ (mod n) then we must show that a + b = a′ + b′. There must exist
integers k, k′ such that a′ = a + nk and b′ = b + nk′, so

a′ + b′ = a + nk + b + nk′ = (a + b) + n(k + k′).

Thus a′ + b′ differs from a + b by a multiple of n, so that a′ + b′ = a + b, as
desired.

Similarly, we would like to define a b = ab, but we must check that this
is independent of the choice of representatives. If a ≡ a′ (mod n) and b ≡ b′

(mod n) then we must show that ab = a′b. As before, a′ = a + nk and
b′ = b + nk for some k, k′ ∈ Z, so

a′b′ = (a + nk)(b + nk′) = ab + n(ak′ + kb + nkk′),

which is congruent to ab modulo n, as desired.
Thus it is possible to perform arithmetic with the residue classes modulo

n. In fact, it’s easy to check that Zn is an additive group with identity 0;
notice the inverse of a is simply −a. Because of the definitions of addition
and multiplication of residue classes, it is possible to either work with integers
in Z and then reduce the result modulo n or to reduce all quantities modulo
n from the beginning and work formally within Zn.

It is possible to identify a subset of Zn that is a multiplicative group as
the following proposition shows. The proof provides an example of working
in Z first and then reducing modulo n. But we will need first a simple lemma.

Lemma 3.19. If a, b, c ∈ Z, gcd(a, b) = 1, and gcd(a, c) = 1, then gcd(a, bc) =
1.

Proof. There exist m, n ∈ Z such that ma + nb = 1, so mac + nbc = c. If
d = gcd(a, bc), then d | (mac+nbc) = c, so d | a and d | c. Since gcd(a, c) = 1,
it follows that gcd(a, bc) = 1.

Proposition 3.20. The set Z∗

n := {a : gcd(a, n) = 1} ⊆ Zn is a multiplica-
tive group.

13



Proof. Z∗

n is closed by the lemma. If gcd(a, n) = 1, then aq + nr = 1 for
some q, r ∈ Z, so aq ≡ 1 (mod n), i.e., q is the inverse of a modulo n. More
formally, (a)−1 = q within Z∗

n.

Example 3.21. If p is prime, then Z∗

n = {1, 2, . . . , p− 1} is a multiplicative
group of order p − 1.

The following appeared as problem 7 of part I of the 1954 Putnam ex-
amination and should illustrate the use of modular arithmetic in problem
solving. (The problem statement was retrieved from [2].)

Problem 3.22. Prove that there are no integers x and y for which x2 +
3xy − 2y2 = 122.

Proof. Solving for x, we obtain by use of the quadratic formula

x =
−3y ±

√

17y2 + 488

2
.

If a number is a perfect square, then it is in particular a perfect square
modulo 17. But the squares modulo 17 are 1, 2, 4, 8, 9, 13, 15, and 16. (This
can be found by squaring the integers from 1 to 16 and reducing the results
modulo 17.) Since 17y2+488 ≡ 12 (mod 17), it follows that the discriminant
is never a perfect square and no integer solutions exist.

3.4 Subgroups

It may happen that a subset of a group is itself a group with respect to the
same operation. This situation is important enough that it is singled out by
the following definition:

Definition 3.23. If (G, ∗) is a group and H ⊆ G is a subset of G, then we
say that H is a subgroup of G if (H, ∗|H×H) is a group, where ∗|H×H is the
restriction of the binary operation ∗ to the subset H × H of G × G. This
situation will be designated by writing H < G; the symbol < in particular
will not determine whether H is a proper subset of G or not.

It is best to clear up some preliminary doubts from the outset:

Lemma 3.24. Suppose H < G. Then

(A) the groups H and G share the same identity and
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(B) if a ∈ H, then the inverse of a with respect to H and the inverse of a
with respect to G coincide.

Proof.

(A) If e ∈ G is the identity in G, then e will by its definition also act as
an identity for H . But H has by Lemma 3.6 exactly one element that
acts as inverse, so e must be it.

(B) If a ∈ H and b is the inverse of a as an element of G, then by part (A)
b will also act as an inverse of a as an element of H . Apply once more
Lemma 3.6.

To check that a subset H ⊆ G of a group G is a subgroup, it suffices by
the definition to check that H is closed under the group operation and the
operation of taking inverses. It is not necessary to check associativity, which
is inherited from the group structure of G. With any initial fears subdued,
examples follow.

Example 3.25. If Z is the group of integers under addition, then the even
integers form a subgroup of Z. This is because the additive inverse of an even
integer is even and the sum of two even integers is even. The odd integers
do not form a subgroup of Z. In particular, there is no identity element, for
0 is even.

Example 3.26. More generally, the integer multiples of some fixed positive
integer n form a subgroup of (Z, +). This is because 0 + 0 ≡ 0 (mod n).

Example 3.27. The unit circle in the complex plane is a subgroup of the
multiplicative group of nonzero complex numbers. If z lies on the unit circle,
we can write z = eiθ for some real θ. This representation shows at once
that |z−1| = |e−iθ| = 1, i.e., the inverse of a unit complex number is a unit
complex number. Similarly, |eiθ1eiθ2 | = |ei(θ1+θ2)| = 1 for real θ1, θ2, so we
find that the product of two unit complex numbers is again a unit complex
number.

The next section will explore in detail a useful and significant example,
but before proceeding it is worth noting the following technique for showing
that a subset of a group is a subgroup.
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Proposition 3.28. A nonempty subset H ⊆ G is a subgroup if and only if
ab−1 ∈ H for all a, b ∈ H.

Proof. If H is a subgroup, then it follows at once that ab−1 ∈ H for all
a, b ∈ H by the definition of a group.

If conversely the stated condition on H holds, then there is some element
a ∈ H since H is nonempty, so e = aa−1 ∈ H by hypothesis. Hence, if
b ∈ H , then b−1 = eb−1 ∈ H . Next, if b, c ∈ H , then we have just found that
c−1 ∈ H , so bc = b(c−1)−1 ∈ H .

Example 3.29. As an illustration of the technique, we will show that if
G is an abelian group and H = {a ∈ G : a2 = e}, then H is a subgroup
of G. In fact, e ∈ H since e2 = e, so H is nonempty. If a, b ∈ H , then
(ab−1)2 = a2b−2 = a2(b2)−1 = e2 = e, so ab−1 ∈ H and H < G by the
proposition.

3.5 Motions of the plane

It is worthwhile developing in detail this particular example, which is acces-
sible to geometric intuition. It will provide another illustration of the utility
of group-theoretic language and will also serve as a useful stage for discussing
normal subgroups later.

An isometry or motion of the plane R2 is a distance-preserving map of
the plane to itself. In sharper formulation, the function f : R2 → R2 is an
isometry if |f(a) − f(b)| = |a − b| for all a, b ∈ R2. The isometries of the
plane form a group under function composition which we will denote simply
by M .

Consider now those motions of the plane that preserve the origin. Such
motions also form a group, the orthogonal group O(2), so we find that
O(2) is a subgroup of M . The following lemma explains the name.

Lemma 3.30. The elements of O(2) are exactly the orthogonal linear oper-
ators on R2.

Proof. If T is an orthogonal linear operator on R2, then T preserves the dot
product and hence distances. Any linear operator will preserve the origin, so
T ∈ O(2).

Conversely, if f ∈ O(2) and a, b ∈ R2, then

|f(a)− f(b)|2 = 〈f(a)− f(b), f(a)− f(b)〉 = |f(a)|2 − 2〈f(a), f(b)〉+ |f(b)|2.
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Since f preserves the origin and distances, |f(a)|2 = |f(a) − f(0)|2 = |a|2

and similarly |f(b)|2 = |b|2, so we find

|f(a)|2 − 2〈f(a), f(b)〉 + |f(b)|2 = |a|2 − 2〈f(a), f(b)〉 + |b|2. (2)

A similar computation yields |a−b|2 = |a|2−2〈a, b〉+|b|2, and this expression
must coincide with (2) since f is an isometry. We have thus 〈f(a), f(b)〉 =
〈a, b〉, so f preserves dot products.

It’s now sufficient to show that f is linear. Using the preservation of the
dot product we find

|f(a + b) − f(a) − f(b)|2 = 〈f(a + b) − f(a) − f(b), f(a + b) − f(a) − f(b)〉

= |f(a + b)|2 − 2〈f(a + b), f(a)〉 − 2〈f(a + b), f(b)〉

+ 2〈a, b〉 + |a|2 + |b|2

= |a + b|2 − 2〈a + b, a〉 − 2〈a + b, b〉 + 2〈a, b〉 + |a|2 + |b|2

= −〈a + b, a + b〉 + 2〈a, b〉 + |a|2 + |b|2

= −|a|2 − 2〈a, b〉 − |b|2 + 2〈a, b〉 + |a|2 + |b|2

= 0.

Finally, if c ∈ R, then |f(ca)| = |ca| = c|a| = c|f(a)| by the preservation of
distance and the origin. We conclude that f is an orthogonal linear operator.

The orthogonal operators provide a convenient representation of an arbi-
trary element of M .

Lemma 3.31. If a basis for R2 is agreed upon, every element f ∈ M has
the form f(x) = Ax + b where A is a 2 × 2 orthogonal real matrix and b is
some vector in R2.

Proof. Put b = f(0) and let t−b denote the translation by −b. Then t−b ◦
f is an isometry preserving the origin, so it is by the preceding result an
orthogonal linear operator T : R2 → R2 with (orthogonal) matrix A with
respect to the specified basis. Hence f(x) = tb ◦ T (x) = Ax + b.

Recall that the matrix A will have always determinant ±1 since it is or-
thogonal. If this determinant is +1, then f is called orientation-preserving.
If this determinant is −1, then f is called orientation-reversing. A classi-
fication of all motions of the plane, which we will not carry out in full detail,
concludes with the following result:
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Theorem 3.32. Any element f ∈ M is exactly one of the following:

• Orientation-preserving motions: rotations about some point and trans-
lations by some fixed vector.

• Orientation-reversing motions: reflections in some line and glide re-
flections, which are compositions of translations and reflections.

A direct proof can be found in Artin [4]. A slightly less direct approach
uses the Cartan-Dieudonné theorem, which asserts in greater generality
that every origin-preserving isometry of Rn is the composition of at most
n reflections in hyperplanes containing the origin. An elegant proof of this
result by induction on the dimension n can be found in [3].

The Cartan-Dieudonné theorem shows that the orientation-preserving or-
thogonal operators on R2 are the compositions of two reflections in lines in-
tersecting the origin. But it is known from geometry that such compositions
are rotations. So if we show that a rotation about the origin followed by
a translation is a rotation, then the classification of orientation-preserving
isometries in Theorem 3.32 will follow by use of Lemma 3.31.

Lemma 3.33. If rθ is the rotation of the plane about the origin through angle
θ and ta is the translation of the plane by the vector a, then the composition
ta ◦ rθ is a rotation (not necessarily about the origin).

Proof. Working with complex coordinates, put b = a/(1−eiθ). If z is a point
in the plane, then

tb ◦ rθ ◦ t−b(z) = eiθz −
eiθa

1 − eiθ
+

a

1 − eiθ

= eiθz + a

= ta ◦ rθ(z),

so ta ◦ rθ is rotation about a/(1 − eiθ) through angle θ.

We will omit similar calculations needed to verify the remainder of The-
orem 3.30.

The group M has many interesting subgroups, and we have found already
a significant one–the orientation-preserving orthogonal operators O(2). We
will examine more later on in connection with normal subgroups.
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3.6 Cosets

We will begin now the identification of a certain class of subgroups of signif-
icant importance in group theory. These are the normal subgroups, and
to isolate their characteristic properties we study first the somewhat peculiar
constructions called cosets.

Definition 3.34. Suppose G is a group and H < G is a subgroup of G. Fix
an element g ∈ G of G. The left coset of H containing g is the set

gH := {gh : h ∈ H}.

The right coset of H containing g is the set

Hg := {hg : h ∈ H}.

The importance of cosets will be gradually uncovered in the following
development of their properties. We first note the following fundamental
phenomenon. The constructions of the proof are as important as the conclu-
sion of the proposition.

Proposition 3.35. Given a group G and a subgroup H < G of G, all left
(right) cosets of H form a partition of G, i.e., the left (right) cosets of H are
disjoint and their union is all of G.

Proof. We prove the proposition for right cosets. Identify two elements of the
group a, b ∈ G if and only if ab−1 ∈ H . This identification is an equivalence
relation, as we now verify.

Since H is a subgroup, aa−1 = e ∈ H , so the relation is reflexive. If
ab−1 ∈ H , then there is an h ∈ H such that ab−1 = h. Taking inverses
gives ba−1 = h−1 ∈ H since H is a subgroup, so the relation is symmetric.
Finally, suppose a, b, c ∈ G, ab−1 ∈ H , and bc−1 ∈ H . Then there exist
h1, h2 ∈ H such that ab−1 = h1 and bc−1 = h2. On multiplying we find
(ab−1)(bc−1) = ac−1 = h1h2 ∈ H , once again because H is a subgroup.
Hence the relation is transitive.

Now if ab−1 ∈ H , then ab−1 = h for some h ∈ H , so b−1 = a−1h; taking
inverses gives b = h−1a. But h−1 ∈ H since H is a subgroup, so b ∈ Ha.
Conversely, suppose b ∈ Ha, so b = ha for some h ∈ H ; then ba−1 = h.
By the symmetry of this relation already established, we find ab−1 ∈ H . In
other words, the equivalence class of a is the right coset Ha.

The equivalence classes automatically partition the group G in the desired
manner, so the proof is complete.
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The following is a striking illustration of this result.

Example 3.36. The three-sphere S3 can be realized as the multiplicative
group of unit quaternions spanned by the basis {1, i, j, k}. Consider the
circle {cos θ + i sin θ : θ ∈ R} < S3. If r is any unit quaternion, then the
coset rH is another circle congruent to H (since, in fact, multiplication by a
unit quaternion is an isometry of the space of quaternions). But such cosets
partition S3 by the preceding result, so we find that S3 can be partitioned
into disjoint and congruent circles. This is the famous Hopf fibration.

Example 3.37. Modular arithmetic can be understood in the language of
cosets. Consider the additive group of integers Z and the subgroup H consist-
ing of all multiples of some fixed integer n. Two integers a, b are congruent
modulo n if their difference is a multiple of n, i.e., if a − b ∈ H . This is
precisely the equivalence relation used in the proof of the preceding propo-
sition, so from the proof of that proposition we find that the residue class of
an integer a is the coset a + H = {. . . , a− 2n, a− n, a, a + n, a + 2n, . . .}, as
before.

3.7 Normal subgroups

Conjugation is an operation that can be performed on the elements of a
group, and it plays a special role in the development of normal subgroups.

Definition 3.38. If G is a group and g ∈ G is an element of G, the function
a 7→ gag−1 is conjugation by g; it is also called the inner automorphism
induced by g. The image gag−1 of a is the conjugate of a by g. Denote
gag−1 by ag. (This is unrelated to exponentiation.) If H ⊆ G is a subset of
G, write Hg = {ag = gag−1 : a ∈ H}.

We are now in a position to define normal subgroups and to discuss their
many properties.

Definition 3.39. A subgroup H < G of a group G is a normal subgroup if
it is fixed by all inner automorphisms. In symbols, this means that Hg = H
for all g ∈ G. If H is normal in G, we write H ⊳ G. Note that this does not
require that H be fixed element-wise by conjugation.

We remark without proof that it is enough to simply require Hg ⊆ H .
This is useful in proving that a subgroup is normal, for then one only needs
to show it is closed under conjugation by elements of G.
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Example 3.40. If G is abelian, it’s immediate that any subgroup H < G
is in fact normal. In fact, the conjugation maps all reduce to the identity in
this case.

Example 3.41. We pause now to continue developing the example of the
group M of motions of the plane R2. In particular, let M+ be the group
of orientation-preserving motions and let T < M+ be the subgroup of M+

consisting only of translations. T is a normal subgroup of M+, as we now
verify.

If g ∈ M+ is an arbitrary orientation-preserving motion of the plane and
ta ∈ T is the translation of the plane by the vector a, we must show that tga
is again a translation. To do this, we appeal to Lemma 9.2 so that we may
write g = tb ◦ rθ where rθ is rotation of the plane about the origin through
the angle θ and tb is translation by the vector b. If c = rθ(a) we find now

tga = g ◦ ta ◦ g−1 = tb ◦ rθ ◦ ta ◦ r−θ ◦ t−b = tb ◦ tc ◦ rθ ◦ r−θ ◦ t−b = tc ∈ T.

Hence T ⊳ M+.
Consider now the group H < T of integer translations, i.e., the group

consisting of those translations of the plane by a vector whose components
are integers. T is an abelian group, so it follows by the previous example
that H is normal in T .

The striking observation is that H is not normal in M+ despite the facts
that H is normal in T and T is normal in M+. To see this, suppose t ∈ T is
translation by the vector (1, 0) and r is rotation of the plane about the origin
through π/4 radians. The conjugate rtr−1 is not an integer translation.

We now expose the relationship between normal subgroups and cosets.

Proposition 3.42. If N ⊳ G and a, b ∈ G, then aNbN = {an1bn2 : n1, n2 ∈
H} = abN .

Proof. Since N is normal, gNg−1 = N for g ∈ G. Multiplying on the right
by g yields gN = Ng. Therefore,

aNbN = a(Nb)N = a(bN)N = abNN = abN

since NN = N .

This property allows arithmetic with the cosets of a normal subgroup
to be performed in the most natural way, and this is the basis of the next
section.
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3.8 Characteristic subgroups

It is instructive to consider a more restrictive condition that can be imposed
on subgroups. In defining a normal subgroup we required that the subgroup
be fixed by all inner automorphisms. By replacing “inner automorphism” by
“automorphism” we obtain a special case:

Definition 3.43. A subgroup H < G of a group G is a characteristic
subgroup of G if it is fixed by all automorphisms of G.

It is immediate from the definition that a characteristic subgroup is a
normal subgroup. We saw in the previous section that if A is normal in B
and B is normal in C, then A is not necessarily normal in C. This is rectified
by requiring that in addition A be characteristic in B.

Proposition 3.44. If A is a characteristic subgroup of B and B is a normal
subgroup of C, then A is normal in C.

Proof. Suppose φ is an inner automorphism of G. Then φ fixes B, so its
restriction to B is an automorphism (not necessarily inner) of B. But A is
then fixed by this restriction and hence is fixed by φ.

3.9 Homomorphisms

In this section we will be concerned with structure-preserving maps between
groups.

Definition 3.45. A function φ : G → H between groups G and H is a
homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G. A bijective homomor-
phism is an isomorphism. If there is an isomorphism from G to H , then
we say that G and H are isomorphic and we write G ∼= H .

Isomorphic groups are essentially the same; one is obtained from the other
by relabeling its elements.

Example 3.46. If G and H are groups, then the function φ : G → H defined
by φ(g) = eH , where eH is the identity in H , is a homomorphism. This is
sometimes called the trivial homomorphism.

Example 3.47. The determinant is a homomorphism from the general linear
group to the multiplicative group of nonzero real numbers.
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Definition 3.48. If φ : G → H is a homomorphism of groups and eH is the
identity in H , then the preimage φ−1(eH) ⊆ G is called the kernel of the
homomorphism φ and is denoted ker φ.

We now prove a series of crucial but simple properties of homomorphisms.
In the following results, let G, H be groups and suppose φ is a homomorphism
from G to H . The proofs are modeled after those given by Isaacs in [9].

Lemma 3.49. If eG and eH are the identities in G and H, respectively, then
φ preserves identities: φ(eG) = eH . Further, φ preserves inverses: if a ∈ G,
then φ(a−1) = (φ(a))−1.

Proof. By the definition of homomorphism, φ(eG) = φ(eGeG) = φ(eG)φ(eG),
so cancellation gives eH = φ(eG), proving the first assertion.

To see the second assertion, write eH = φ(eG) = φ(aa−1) = φ(a)φ(a−1),
again using the definition of homomorphism. This simply means that φ(a−1) =
(φ(a))−1, as desired.

Lemma 3.50. The kernel ker φ is a normal subgroup of G.

Proof. First we show that the kernel is even a subgroup. It’s nonempty since
eG ∈ ker φ (using the previous lemma). It is closed under taking inverses
since, if a ∈ ker φ, then the previous lemma implies φ(a−1) = (φ(a))−1 =
e−1

H = eH . And it is closed under multiplication in G since, if a, b ∈ ker φ,
then φ(ab) = φ(a)φ(b) = eHeH = eH .

Now we show that the kernel is a normal subgroup. Suppose n ∈ ker φ
and a ∈ G. Then φ(a−1na) = φ(a−1)φ(n)φ(a) = φ(a)−1eHφ(a) = eH .

Lemma 3.51. The homomorphism φ is injective if and only if its kernel is
trivial, i.e., ker{φ} = {eG}.

Proof. First suppose φ is injective. If a ∈ ker φ, then φ(a) = eH = φ(eG).
Since φ is injective, a = eG and ker φ = {eG}.

Conversely, suppose ker φ = {eG}. If φ(a) = φ(b), then eH = φ(a)(φ(b))−1 =
φ(ab−1) by previous results. Therefore, ab−1 ∈ ker φ, which means ab−1 = eG,
i.e., a = b. Hence φ is injective.
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3.10 Quotient groups

If N ⊳G, denote the set of cosets of N by G/N . Proposition 3.40 can be used
to endow the cosets of N with a binary operation. In fact, this operation
makes G/N of N into a group.

Proposition 3.52. Suppose N ⊳ G. Then the set G/N of cosets of N is a
group with the binary operation defined by (aN)(bN) = (ab)N for a, b ∈ G.

Proof. That this is a binary operation on G/N is the content of Proposition
3.40. The identity is eN = N where e is the identity of G. The inverse of aN
is a−1N . Associativity follows from the associativity of the group operation
on G.

If N ⊳G, then the group G/N endowed with the above operation is called
a quotient group; the notation G/N is read aloud as “G mod N .” One
can imagine that G/N is obtained from G by collapsing the structure of G
so that two elements a, b ∈ G become identified if ab−1 ∈ N . The following
examples illustrate the concept as well as this mode of thought.

Example 3.53. We can now provide a swift description of modular arith-
metic. The additive group of integers modulo n is the quotient group Z/nZ;
this notation is explained at last. It’s important to note, however, that we
have so far considered in the quotient construction only one binary operation,
so the quotient group Z/nZ does not precisely coincide with the system of
modular arithmetic discussed previously. This is remedied by viewing Z as
a ring instead of a group and invoking the machinery of quotient rings.

Example 3.54. Suppose G = C is the multiplicative group of nonzero com-
plex numbers and N is the multiplicative group of unit complex numbers (the
unit circle in the complex plane). Two complex numbers are to be identified
if their quotient has unit magnitude, and this occurs only if the two numbers
have the same magnitude. Thus the elements of G/N can be imagined as
the concentric origin-centered circles in the complex plane with the product
of two such circles being the circle whose radius is the product of the radii
of the two factor circles. Evidently this is the same as the multiplicative
group of positive real numbers (by identifying such a circle with its radius,
a positive real number).

Definition 3.55. Suppose N is a normal subgroup of the group G. Consider
the function π : G → G/N defined by π(g) = Ng. Since NaNb = Nab for
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all a, b ∈ G, this function is a surjective homomorphism. It is called the
canonical homomorphism from G onto G/N .

Example 3.56. The canonical homomorphism Z → Z/nZ provides a ho-
momorphism from the additive group of integers to the group of residues
modulo n by sending each integer to its residue class.

We now mention but do not prove a crucial theorem that somewhat solves
the problem of identifying quotient groups. It is sometimes called the first
isomorphism theorem.

Theorem 3.57. ([9], Theorem 3.3) Let φ : G → H be a surjective homomor-
phism from a group G onto a group H. Then there is a unique isomorphism
θ : G/ ker φ → H such that θ◦π = φ, where π is the canonical homomorphism
G → G/ ker φ. In particular, H ∼= G/ ker φ.

This theorem can be applied to the previous example to avoid the use of
intuitive reasoning. We will use it again in formulating the mapping proper-
ties of free groups.

3.11 Free groups

The presentation of the free group given here is inspired by that given by
Artin in [4]. Free groups provide the important theoretical underpinnings for
the Wirtinger presentation, introduced in the section on knots.

Given an alphabet A = {a, b, c, . . . }, we consider the set W of all words
over A–finite strings of letters from the alphabet A with repetition allowed.
We introduce a product or binary operation on W via concatenation or jux-
taposition. For instance, the concatenation of b and ab is bab. The set W
endowed with this product is a semigroup, sometimes called the free semi-
group on the alphabet A.

For each symbol a ∈ A we introduce the “inverse” symbol a−1. Let A′

denote the collection {a, a−1, b, b−1, . . . } of letters from A together with their
inverses. Let W ′ be the set of words over the alphabet A′.

Introduce the following cancellation rule in W ′. If any string of the form
aa−1 or a−1a, where a ∈ A, occurs as a substring of a word w ∈ W ′, then w is
to be identified with the word obtained from w by deleting the substring aa−1

or a−1a. Thus bacc−1b is to be identified with bab. A word is called reduced
if no such cancellations are possible. The following lemma, reproduced here
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together with its proof from Artin [4], shows that when multiple cancellations
are possible the same reduced word is always obtained if all cancellations are
performed, no matter the order.

Lemma 3.58 (Artin, Pg. 218.). Any word w ∈ W ′ has precisely one reduced
form.

Proof. We proceed by induction on the length of the word. Suppose the
unreduced word w has the form . . . aa−1 . . . . It is enough to show that all
reduced forms of w can be obtained by deleting aa−1 first, for the result then
follows by induction on the smaller word that results from this cancellation.

Suppose ω is a reduced form of w. ω is obtained from w by a sequence
of cancellations. If aa−1 occurs in this sequence of cancellations, then the
sequence of cancellations can be rearranged so that aa1 is cancelled first.
This case is hence settled.

So suppose aa−1 does not occur in the sequence of cancellations yielding
ω from w. The pair aa−1 cannot be present in ω since it is reduced, so w
must contain a substring of the form a−1aa−1 or aa−1a. Since aa−1 is not
cancelled, in both possibilities it must be a−1a that is cancelled. But the
result of this cancellation is precisely the same as the result of cancelling
aa−1. So we may replace this cancellation by the cancellation of the original
pair aa−1, reducing to the previously settled case.

First, it should be verified that if w1 ≃ w2 and v1 ≃ v2, then w1v1 ≃ w2v2

(where the juxtaposition of two words indicates their product). Write w′

1 for
the reduced form of w1 and v′

1 for the reduced form of v1, so that w1v1 has
the form w′

1v
′

1.
Since w2 is equivalent to w1 and v2 is equivalent to v1, w2 can be reduced

to w′

1 and v2 can be reduced to v′

1. Hence w2v2 has also the form w′

1v
′

1.
Now further cancellations can potentially be performed in w′

1v
′

1 to obtain
the common reduced form of the two products w1v1 and w2v2.

Definition 3.59. The set of equivalence classes of words W ′ over the alpha-
bet A′ forms a group with respect to concatenation. (Associativity and the
existence of an identity follow from the properties of W ′. The inverse of the
concatenation a1a2 . . . an is the concatenation a−1

n a−1
n−1 . . . a−1

1 .) This is the
free group on the alphabet A.
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3.12 Group presentations

Suppose that G is a group. A subset S of G is said to generate G if every
element of G can be written as the product of finitely many of the elements
of S along with their inverses.

Suppose S ⊆ G is a generating set of G. There is then a homomorphism
φ from the free group on S to G. This homomorphism may fail to be injective
if G has any significant structure beyond that implied by the group axioms.
More precisely, G is isomorphic to F/ ker φ, where F is the free group on S.
(Apply the first isomorphism theorem.)

Definition 3.60. The elements of ker φ are called the relations satisfied by
the generators of the group G.

Given the generators and the relations they satisfy, the group F/ ker φ
is determined, and hence G is determined, too. But in general not all the
relations are necessary. In fact, it suffices to consider any subset of ker φ that
generates the group ker φ.

Definition 3.61. A subset R of ker φ that generates ker φ (i.e., ker φ is the
smallest normal subgroup of G containing R) is called a set of defining
relations for G.

A list of generators together with a set of defining relations will determine
the group G. These data constitute a presentation of the group. If the
generators are the elements g1, g2, . . . , gn and the relations are the elements
r1, r2, . . . , rm, then the presentation is written 〈g1, g2, . . . , gn | r1, r2, . . . , rm〉.

To summarize, the presentation 〈g1, g2, . . . , gn | r1, r2, . . . , rm〉 determines
the group which is the quotient of the free group on the set of generators by
the smallest normal subgroup containing the words r1, r2, . . . , rm.

4 Knots

We have built enough infrastructure to now consider our main topic: knots.
While knots are inspired by those that we can make out of shoelaces, the
study of these knots, starting with rigorous definitions, quickly develops into
something of its own.
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4.1 What is a knot?

We recall that S3 is the 3-sphere: the locus of all points in R4 that are unit
distance from the origin. Alternatively, S3 is the one-point compactification
of R3: it is the result of adjoining to R3 a point at infinity. This is in many
ways the more useful viewpoint for our purposes.

We must be precise about what we mean by a knot. The following defi-
nition is simultaneously rigorous and intuitive.

Definition 4.1. A knot is a homeomorphic image of S1 in S3.

It is often convenient–and sometimes even crucial–to assign an orientation
to a knot, which can be visualized as a flow of arrows along the knot.

The fundamental problem of knot theory is to classify knots. Before this
can be done it is necessary to agree on a notion of equivalence of knots. Let’s
agree to use the following notion, which is standard (see [6]):

Definition 4.2. Two knots A and B, considered as subsets of S3, are re-
garded as being the same knot if they are related by an ambient isotopy:
there exists a continuous function φ : S3 × [0, 1] → S3 such that (i) for each
t ∈ [0, 1] the function φ(·, t) is a homeomorphicm from S3 onto S3 and (ii)
φ(A, 1) = B.

Notice that an ambient isotopy is a certain continuous deformation of the
ambient space containing the knots, not just of the knots themselves.

As we proceed we will develop a small but useful library of knots. The
first item in this library is something we may not ordinarily call a knot at
all.

Example 4.3. The unknot is any knot equivalent up to ambient isotopy
to the standard embedding of S1 in S3 as a geometrically round circle. The
unknot is depicted in Figure 1. The trefoil knot is depicted in Figure 2.

4.2 Knot diagrams

Knots more complicated than the unknot are difficult to visualize in three-
dimensional space. It is often much more convenient to find a two-dimensional
representation that contains information about the three-dimensional struc-
ture of the knot. Such a representation is obtained by selecting a plane and
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Figure 1: The unknot, a knot that is not much of a knot.

Figure 2: The (left-handed) trefoil knot.

projecting the knot onto the plane. We require that the projection is injec-
tive everywhere except at finitely many double points, which are often called
crossings, and that each crossing is distinguished as either an overcrossing
or undercrossing, thereby facilitating the reconstruction of the original knot
from the projection. Such a projection is a knot diagram. For instance,
Figure 2 is a knot diagram of the left-handed trefoil.

The first question to be investigated is how the diagrams of a given knot
are related. The two diagrams in Figure 3 are both projections of the unknot;
this illustrates that this is an important and significant question.

4.3 The Reidemeister moves

The answer was stumbled upon by German mathematician Kurt Reidemeis-
ter in his 1926 paper “Elementare Begründung der Knotentheorie.” Reide-
meister showed in this paper that if two knot diagrams represent the same
knot, then one diagram is related to the other via finitely many applications
of the three Reidemeister moves.
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Figure 3: These two knot diagrams both depict the unknot. How are the
diagrams related?

Figure 4: The first Reidemeister move allows either of the displayed strands
to be transformed into the other.

Figure 5: The second Reidemeister move allows one strand to be pulled just
over another or for one strand to be pulled off another.
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Figure 6: The third Reidemeister moves an arc to the other side of a crossing.

Definition 4.4. 1. The first Reidemeister move adds or removes a
crossing in the form of a simple loop.

2. The second Reidemeister move adds or removes two crossings si-
multaneously.

3. The third Reidemeister move move slides a strand from one side of
a crossing to the other.

These moves are depicted in Figures 4-6. It is important to notice that
these figures are local zoomed-in pictures of larger knot diagrams.

For emphasis, we record Reidemeister’s result as a theorem, which we will
not prove:

Theorem 4.5 (Reidemeister). If two knot diagrams represent the same knot,
then either of the diagrams can be transformed into the other via the appli-
cation of finitely many of the three Reidemeister moves.

4.4 Homotopy

One of the primary methods of identifying knots is to assign a construct
to each knot in such a way that two knots are equivalent precisely when
the associated constructs are equivalent (the notion of equivalence of the
associated constructs must be decided upon as well). Such a construct is
a knot invariant. A partial knot invariant is obtained by forming the
fundamental group of the exterior of a knot. We now define these ideas in
detail. The treatment given here is inspired by that in [1].

It is necessary first to provide an exposition of homotopy.
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Figure 7: A homotopy with fixed endpoints between two paths.

Definition 4.6. If X is a topological space and a, b ∈ X are points in X,
then a path from a to b in X is a continuous function γ : [0, 1] → X
satisfying γ(0) = a, γ(1) = b.

It may be that for two given paths from a to b in the space X there exists
a continuous family of intermediate paths, as in Figure 7.

This notion is made precise by the following definition:

Definition 4.7. Two paths α and β from a to b in the space X are homo-
topic with fixed endpoints if there is a continuous function F : [0, 1] ×
[0, 1] → X such that

F (u, 0) = α(u), u ∈ [0, 1],

F (u, 1) = β(u), u ∈ [0, 1],

F (0, v) = a, v ∈ [0, 1],

F (1, v) = b, v ∈ [0, 1].

We write α ≃ β rel{0, 1} and refer to F as a homotopy from α to β.

For each v ∈ [0, 1] the function F (·, v) : [0, 1] → X is a path in X from
a to b. The first two conditions mean that v = 0, v = 1 correspond to
the paths α, β, respectively. The final two conditions mean that the paths
corresponding to all values of v ∈ [0, 1] go from a to b.

Example 4.8. Perhaps the simplest example of a homotopy is achieved by
linear interpolation of paths in Rn. If α and β are paths in Rn with the
same fixed endpoints a, b ∈ Rn, then F (u, v) = α(u) + v[β(u) − α(u)] is a
homotopy from α to β. Continuity of F : [0, 1]× [0, 1] → Rn follows from the
continuity of α, β since continuity is preserved by vector addition and scalar
multiplication.
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Proposition 4.9. The homotopy relation on paths with the fixed endpoints
a, b in the topological space X is an equivalence relation.

Proof. We check reflexivity, symmetry and transitivity in sequence. Fix three
paths α, β, γ in X going from a to b.

Reflexivity. α ≃ α holds because of the constant or identity homotopy
F (u, v) = α(u).

Symmetry. If α ≃ β with the homotopy F (u, v), then β ≃ α using the
homotopy F (u, 1 − v).

Transitivity. This case must be handled with greater care. Suppose α ≃ β
with the homotopy F (u, v) and β ≃ γ with the homotopy G(u, v). Then
the function from [0, 1]× [0, 1] → X that equals F (·, 2v) for v ∈ [0, 1/2]
and G(·, 2v−1) for v ∈ [1/2, 1] is a homotopy from α to γ because this
function’s domain can be split into the union of two disjoint closed sets
with its restriction to each being continuous.

4.5 The fundamental group

Consider the set of paths with common starting and ending point a in the
space X. We would like to introduce a group structure on this set, and to
do so we introduce the following product or composition on such paths.

Definition 4.10. Given paths α, β : [0, 1] → X starting and ending at a,
the product path γ = α ·β traverses α and then β at twice the speed. More
precisely, γ(t) = α(2t) for t ∈ [0, 1/2] and γ(t) = β(2t− 1) for t ∈ [1, 2, 1].

Lemma 4.11. Let αi, βi for i ∈ {1, 2} be paths in X with starting and ending
points a. This product is well-defined in the sense that if α1 ≃ α2 and β1 ≃ β2

using the homotopies F, G : [0, 1]2 → X, respectively, then α1 · β1 ≃ α2 · β2.

Proof. The path F (·, v) ◦ G(·, v) is defined for v ∈ [0, 1] and facilitates a
homotopy from α1 · β1 to α2 · β2.

Proposition 4.12. The set of paths starting and ending at the fixed point a
(where paths are considered equivalent up to based homotopy) in the topolog-
ical space X forms a group under this product.
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Proof Sketch. Fix three such paths α, β, γ.
If φ : [0, 1] → [0, 1] is any continuous function satisfying φ(0) = 0 and

φ(1) = 1, then α ◦ φ ≃ α via linear interpolation. In words, homotopy class
is preserved by continuous reparameterization.

The product α · (β · γ) is a reparameterization of the product (α · β) · γ
where the reparameterization map φ is piecewise linear. It is thus shown that
the product is associative.

The path e that is identically equal to a serves as the identity. More
precisely, α ◦ e is a reparameterization of α by a piecewise linear map, and
the same is true of e ◦ α.

Finally, we must check the existence of inverses. In fact, the inverse of
α(t) is the path α−1(t) = α(1 − t). This must be verified by showing that
α ◦ α−1 and α−1 ◦ α both reduce to the identity e, defined above. We omit
these verifications.

2

Definition 4.13. Given a topological space X and a fixed point a ∈ X, the
group of all paths in X starting and ending at a, considered up to based
homotopy, with respect to the above product is written π1(X, a) and called
the fundamental group of X with basepoint a.

4.6 The knot group

We are now in the position to define a useful partial knot invariant. The
construct that this invariant associates to a knot is a group.

Definition 4.14. Given a knot K in S3, the exterior of K is the complement
of a small open tubular neighborhood of K. The knot group of K is the
fundamental group of the exterior of K.

Two knots equivalent up to ambient isotopy have homeomorphic exteriors
and hence isomorphic knot groups. In other words, two equivalent knots have
isomorphic knot groups. As a partial converse, Gorden and Luecke showed
in [7] that two knots with homeomorphic complements are equivalent up to
ambient isotopy, but there exist knots with isomorphic knot groups whose
complements that are nonetheless not homeomorphic.
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4.7 The Wirtinger presentation

We now introduce a simple algorithm to compute the fundamental group of
the exterior of a knot. More precisely, this algorithm provides a presentation,
called the Wirtinger presentation, of the knot group. We do not prove
the algorithm’s correctness here but instead refer the reader to [8].

Given a knot K, we begin with a diagram of K contained in the plane.
We construct from this diagram a graph whose vertices are the crossings of
the diagram and whose edges are the connected arcs of the diagram that
terminate at the crossings. Let us label the edges a0, . . . , an−1 such that ai

is connected to ai+1 and ai−1 (with subscripts computed modulo n). The
ordering of the subscripts induces an orientation on the knot (and on each
arc ai individually as well). We work with this orientation.

Using this orientation, under each arc ai draw an arrow xi going from
“right to left.” We imagine that each xi is a loop in the exterior of K with
some fixed basepoint a (imagined as the tip of the nose of the reader). The
loop proceeds from a to the tail of xi, thence along xi to its head, and finally
from its head back to a.

We examine each crossing of the diagram. Consider, for instance, the
crossing of the three arcs ai, ai+1, and ak (where the union of ai and ai+1 is
a strand of the knot passing under the transverse arc ak). Depending on the
relative orientations, one of two relations will hold: either xkxi = xi+1xk or
xixk = xkxi+1. We let ri designate the relation that is true, and we obtain a
collection of n relations {r1, . . . , rn} satisfied by the n elements {x1, . . . , xn}.

Theorem 4.15 ([8], Pg. 57). The fundamental group of the exterior of the
knot K has the Wirtinger presentation

〈x1, x2, . . . , xn|r1, r2, . . . , rn〉.

Example 4.16. We find that the fundamental group of the exterior of the
unknot has one generator and no relations. It is hence isomorphic to Z.

Example 4.17. We now give a nontrivial example that also illustrates that
the knot group isn’t a complete knot invariant. This outstanding example
comes from [10]. Figures 8 and 9 show knots A and B. These knots are not
equivalent, but we will now see that they have isomorphic knot groups.

Knot A has the Wirtinger presentation

〈a, b, c, d, e, f |aba−1 = c, faf−1 = b, bfb−1 = a, cdc−1 = e, ece−1 = e, ded−1 = f〉
∼= 〈b, c, d|bcb = cbc, cdc = dcd〉.
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Figure 8: Knot A.

Figure 9: Knot B.

Knot B has the Wirtinger presentation

〈a, b, c, d, e, f |aba−1 = c, faf−1 = b, bfb−1 = a, ede−1 = c, dfd−1 = e, fef−1 = d〉
∼= 〈a, e, f |afa = faf, efe = fef〉.

The simplified presentations are evidently describing the same group since
they differ only in the names of the generators.

4.8 Linking numbers

Definition 4.18. A link is a finite collection of disjoint knots that may loop
around one another but do not intersect.

Let K0 and K1 be two oriented knots in S3. Choose a diagram of the link
(containing the projections of both knots onto the same plane) and assign
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Figure 10: Left-handed and right-handed crossings.

to each crossing ±1 according to whether the crossing is right-handed or
left-handed. Examples of these crossings are shown in Figure 10.

Definition 4.19. The linking number of K0 and K1, denoted lk(K0, K1),
is the sum of the signs associated to each crossing of the knot diagram.

There is an immediate issue: if the linking number depends on the choice
of knot diagram, then it is not well-defined. However, it can be shown that
the linking number is preserved by each of the three Reidemeister moves and
is hence, in fact, independent of the choice of projection.

4.9 Branched covers

Definition 4.20. A branched cover is a continuous function p : X → M
between compact manifolds X, M such that for a submanifold A ⊂ M , M−A
is exactly the collection of points that are evenly covered by p. We call A
the branch set of p.

Example 4.21. The map

z 7→
zk

|z|k−1

is a branched cover of the unit disc. The branch set consists only of the
origin.

Let J be a fixed knot in S3. Suppose K is a knot in the exterior of J
that lifts in the 2-fold branched cover of S3, branched over J , to a link of two
components K0 and K1. We now examine the linking number lk(K0, K1).

Suppose J is the unknot, in which case the 2-fold branched over is S3.
We will say that K is in standard position if in the projection of K

∐

J to
a plane all crossings where J passes over K are adjacent and all those where
J passes under K are adjacent.
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Figure 11: From left to right: a knot K (black) in S3 linked with the unknkot
(blue); K (black) in standard position linked with the unknot (blue); the
two-component lift of K (green and red) to the 2-fold branched cover of S3

branched over the unknot (blue).

Let us assume K is in standard position–any knot is equivalent to a
knot in standard position. The lift of K to the 2-fold branched cover of S3,
branched over J , is the link K0

∐

K1 of two components, and we compute
lk(K0, K1) in this cover.

Let K ′ be the tangle obtained by cutting the strands of K as they pass
through the disc bounded by the unknot J . We thereby obtain a projection
of K0

∐

K1 in the plane by gluing two copies of K ′ together in an orientation-
preserving way.

Example 4.22. This method yields the following result when K takes on
a particular simple form. Let K be a knot that links the unknot J exactly
2n times in the same direction without crossing iteslf. Then lk(K0, K1) = n.
The case n = 4 is depicted in the Figure 11.

38



References

[1] Gamelin, T. W., and Greene, R. E., “Introduction to Topology”, Second
Edition, Dover, 1999.

[2] Larson, L., “Problem-Solving Through Problems”, Springer Science +
Business Media, 2006.

[3] Stillwell, J., “Naive Lie Theory”, Springer Science + Business Media,
2008.

[4] Artin, M., “Algebra”, Prentice-Hall, 1991.

[5] Herstein, I. N., “Abstract Algebra”, Third Edition, John Wiley & Sons,
1999.

[6] Amenta, N., Peters, T. J., and Russell, A., “Computational Topology:
Ambient Isotopy Approximation of 2-Manifolds”, 2001.

[7] Gordon, C. and Luecke, J., “Knots are determined by their comple-
ments”, J. Amer. Math. Soc. 2 (1989) 371-415.

[8] Rolfsen, D., “Knots and Links”, American Mathematical Society, 2003.

[9] Isaacs, I. M., “Algebra: A Graduate Course”, Brooks Cole, 1993.

[10] Birrell, E., “The Knot Quandle”, The Harvard College Mathematics
Review, 2007, 44.

39


